Tetrahedron Letters No. 37, pp 3287 - 3290, 1977. Pergamon Press. Printed in Great Britain.

SUBSTITUENT EFFECTS ON C-13 CHEMICAL SHIFTS IN ALIPHATIC AND AROMATIC SERIES. PROPOSAL OF NEW INDUCTIVE SUBSTITUTENT PARAMETER (1; IOTA) AND THE APPLICATION

> Naoki INAMOTO* and Shozo MASUDA Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan

(Received in Japan 7 July 1977; received in UK for publication 24 July 1977)

In the previous papers, $^{1-3}$ we reported that the relative substituent C-13 chemical shifts (13 C-SCS) of aliphatic and aromatic carbons are mainly controlled by group electronegativity (x_x) showing periodical dependence and to a small extent by resonance-like effect. We now propose a new inductive substituent parameter which is determined based on the atomic properties, in order to interpret 13 C-SCS universally.

Modifying the electronegativity defined by Gordy,⁴ we examined empirically to evaluate an inductive parameter for the atom directly bonded to ring or chain as a function of the effective nuclear charge in the valence shell (Z_{eff}) and the effective principal quantum number (n_{eff}) , which are given by Slater rule. We define the inductive parameter of atoms, $_{atom}$ (<u>iota</u> in Greek letter), by the following equation, in order to avoid the periodical dependence.²

$$a_{tom} = (Z_{eff} + 1)/n_{eff}$$

For the second period group substituents, the Z_{eff} values were calculated using the charge obtained from bond dipole moment,⁵ and the inductive substituent parameters (1) were estimated using the equation (1 = 0.64 χ_x + 0.53), which was obtained from the plot of the calculated 1_{atom} and 1 against χ_x . For the other period substitutents, the 1_{atom} values were used as it stands. The 1 values obtained for various atoms and groups are given in Table.

To test the applicability of the new 1 parameter, a number of selected data¹⁻³ on ¹³C-SCS in aliphatic and aromatic series were examined.⁶ Plot of C_{α} -SCS in monosubstituted methanes and ethanes against 1 is shown in Fig. 1. With exception of the groups such as cyano- and iodine-groups the points fall closely along a straight line (C_{α} -SCS = -54.901 + 96.37, r = 0.940. n = 18). The deviation of those groups may arise from their anisotropy⁷ and further for iodine may be attributed to its large spin-orbit interaction (LS) shift.⁸

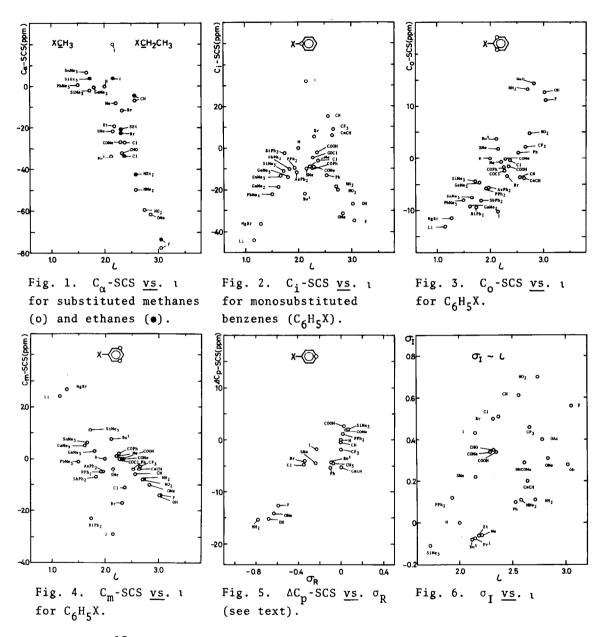
Figs. 2, 3 and 4 show the correlation between C_{ipso} , C_{o} and C_{m} -SCS in monosubstituted benzenes and the 1, respectively. In the case of C_{ipso} -SCS, the plot showed two lines having positive or negative slope depending on the lower or higher electronegativity of the group, respectively. Similar behavior

3287

X	l	Х	l	Х	ι	Х	ı
Li	1.15	PPh ₂	1.93	COC1	2.27	NHCOMe	2.61
MgBr	1.28	AsPĥ ₂	1.97	COMe	2.29	C≡CH	2.64
ZnMe	1.45	н	2.00	СНО	2.32	CF3	2.66
PbMe 3	1.50	But	2.12	Br	2.32	NH ₂	2.71
GaMe ₂	1.62	I.	2.15	COOH	2.35	NO_2	2.74
SnMe ₃	1.66	Pri	2.15	C1	2.37	OAČ	2.78
SiMez	1.72	SMe	2.15	CH=CH ₂	2.50	OMe	2.83
BiPh2	1.74	Et	2.18	Ph 🕻	2.53	OEt	2.94
GeMez	1.80	Me	2.21	CN	2.56	OH	3.02
SbPh	1.83	COPh	2.26	NMe 2	2.58	F	3.05

Table The 1 parameter for various substituents (X)

was also observed in the case of C_{α} -SCS for monosubstituted ethylenes. Comparison of Figs. 1 and 2 suggests that the less electronegative groups directly bonded to unsaturated systems interact markedly with π -electron on $C_{ipso}^{-}(C_i)$ or C_{α}^{-} atom.


On the contrary, C_0 -SCS showed a good linear relationship with 1 as shown in Fig. 3, indicating that C_0 -SCS are approximately controlled by inductive effect. Deviation of NH₂ and OMe groups having lone pair electrons may be attributed to a contribution of π -inductive effect.⁹

The nearly linear relationship between the $C_m\mbox{-}SCS$ and ι is observed as shown in Fig. 4, though several substituents deviate because of some interaction with $\pi\mbox{-}electron$.

In the case of C_p -SCS, it seems reasonable to assume that the line drawn through H- and NO₂-groups in the plot of C_p -SCS against 1 is regarded as that controlled only by inductive effect, because the σ_R values for H- and NO₂-groups are zero.¹⁰ Plot of the deviation (ΔC_p -SCS) from the above line against the resonance substituent constant σ_R which was used tentatively gave a satisfactory linear relationship as shown in Fig. 5. Thus, the C_p -SCS are well explained by a new type of formula (C_p -SCS = -6.01(1 + 2.87 σ_R) + 11.56, r = 0.861, n = 31). The C_p -SCS of monosubstituted ethylenes are similar to those of the C_p -SCS.

Similar dual parameter equations are also applied to C_{α} - and C_{β} -SCS of side chain in 3- and 4-substituted benzene derivatives. The typical examples are as follows.

	<u>C</u> -SCS	r	n	ref.
4-XC ₆ H ₄ CH ₃ ¹¹	$-0.35(1 + 4.53\sigma_{R}) + 0.71$	0.904	16	1
4-XC6H4C00H	$1.86(1 + 1.18\sigma_{R}) - 3.91$	0.931	7	3
3-ХС ₆ Н <u>4С</u> ООН	$2.85(1 + 1.09\sigma_{\rm R}) - 6.01$	0.910	6	3
4-XC ₆ H ₄ <u>C</u> ≡N	$3.07(\iota + 1.24\sigma_{R}) - 6.41$	0.965	13	3
3-XC6H <u>4C</u> ≡N	$3.35(1 + 0.83\sigma_R) - 7.00$	0.901	11	3
4-XC ₆ H ₄ CH ₂ CH ₃	0.82(ι + 1.16σ _R) - 1.78	0.870	10	12
$4 - XC_6H_4C(Me) = CH_2$	-3.86(1 + 1.50 σ _R) + 7.75		10	13

Usually, ¹³C-SCS have been explained by dual parameter equations containing σ_I and σ_R .⁹ The plot of inductive substituent constant σ_I^{10} against ι is shown in Fig. 6, but the plot appears to show two separate lines due to the electron-withdrawing or the higher period substituents and the electron-donating or the second period substituents with lone pair electrons, respectively.

The significant merit of ι parameter is the point that the values for the most substituents are calculated very easily from χ_{χ}^{14} without any experimental results.

In conclusion, the above results strongly suggest that the ¹ parameter contains undoubtedly only inductive effect, and the ¹³C-SCS in aliphatic and aromatic series are satisfactory interpreted by the equation, $a(\iota + b\sigma_R) + c$, using the widely applicable 1 parameter, which would be useful for other linear free energy relationships. Moreover, the plot against ι is considered to be very helpful to find out any interaction with substituent, and to clarify the transmission mechanism of substituent effect.

REFERENCES AND NOTES

- N. Inamoto, S. Masuda, K. Tokumaru, K. Tori, M. Yoshida, and Y. Yoshimura, <u>Tetrahedron_Lett.</u>, 3707 (1976).
- 2. Idem., Ibid., 3711 (1976).
- 3. N. Inamoto, S. Masuda, K. Tori, and Y. Yoshimura, Ibid., 737 (1977).
- 4. W. Gordy, Phys. Rev., 69, 604 (1946).
- 5. D. M. Grant and W. M. Litchman, J. Am. Chem. Soc., 87, 3994 (1965).
- 6. The sign of chemical shifts relative to unsubstituted compounds (${}^{13}C$ -SCS) used negative for low field shifts. ${}^{13}C_{\beta}$ -SCS in $C_{2}H_{5}X$ series are more complex and the treatment is in progress.
- 7. I. Morishima, A. Mizuno, and T. Yonezawa, Chem. Phys. Lett., 7, 633 (1970).
- 8. I. Morishima, K. Endo, and T. Yonezawa, J. Chem. Phys., 59, 3356 (1973).
- R. D. Topsom, "Progr. Phys. Org. Chem.," ed. R. W. Taft, Vol. 12, p. 1, John Wiley & Sons, New York (1976).
- Exner, "Advances in Linear Free Energy Relationships," ed. N. B. Chapman and J. Shorter, Chapter 1, Plenum Press, London (1972).
- 11. We reported previously³ that the substituent effect of C_{α} -SCS in $4-XC_{6}H_{4}CH_{2}CH_{2}R$ (R=Br, Me_{2}) systems is reverse to that of p-substituted toluenes. However, it was found using the shift-shift relationship that C_{α} -SCS of the former are similar to those of p-substituted toluenes and ethylbenzenes. The misunderstanding was brought about because of a limited number of substituents.
- W. F. Reynolds, R. H. Kohler, and G. K. Hamer, <u>Tetrahedron Lett.</u>, 4671 (1976).
- 13. G. K. Hamer, I. R. Peat, and W. F. Reynolds, Can. J. Chem., 51, 915 (1973).
- P. R. Wells, "Progr. Phys. Org. Chem.," ed. A. Streitwieser, Jr. and R. W. Taft, Vol. 6, p. 111, John Wiley & Sons, New York (1968).